Long term stock market prediction

Long term stock market prediction

Posted: Kagdila Date: 17.07.2017

Stock market prediction is the act of trying to determine the future value of a company stock or other financial instrument traded on an exchange.

Why Market Returns May Be Lower in the Future

The successful prediction of a stock's future price could yield significant profit. The efficient-market hypothesis suggests that stock prices reflect all currently available information and any price changes that are not based on newly revealed information thus are inherently unpredictable. Others disagree and those with this viewpoint possess myriad methods and technologies which purportedly allow them to gain future price information.

The efficient-market hypothesis posits that stock prices are a function of information and rational expectations, and that newly revealed information about a company's prospects is almost immediately reflected in the current stock price. This would imply that all publicly known information about a company, which obviously includes its price history, would already be reflected in the current price of the stock.

Accordingly, changes in the stock price reflect release of new information, changes in the market generally, or random movements around the value that reflects the existing information set. Burton Malkielin his influential work A Random Walk Down Wall Streetclaimed that stock prices could therefore not be accurately predicted by looking at price history.

As a result, Malkiel argued, stock prices are best described by a statistical process called a "random walk" meaning each day's deviations from the central value are random and unpredictable.

This led Malkiel to conclude that paying financial services persons to predict the market actually hurt, rather than helped, net portfolio return. A number of empirical tests support the notion that the theory applies generally, as most portfolios managed by professional stock predictors do not outperform the market average return after accounting for the managers' fees. While the efficient-market hypothesis finds favor among financial academics, its critics point to instances in which actual market experience differs from the prediction-of-unpredictability the hypothesis implies.

Warren Buffett's Advice for a Stock Market Crash in -- The Motley Fool

A large industry has grown up around the implication proposition that some analysts can predict stocks better than others; ironically that would be impossible under the Efficient Markets Hypothesis if the stock prediction industry did not offer something its customers believed to be of value. Prediction methodologies fall into three broad categories which can and often do overlap.

They are fundamental analysistechnical analysis charting and technological methods. Fundamental Analysts are concerned with the company that underlies the stock itself. They evaluate a company's past performance as well as the credibility of its accounts.

Warren Buffett is perhaps the most famous of all Fundamental Analysts. Fundamental analysis is built on the belief that human society needs capital to make progress and if a company operates well, it should be rewarded with additional capital and result in a surge in stock price.

Stock market Excellent long term stock prediction technique using EMA

Fundamental analysis is widely used by fund managers as it is the most reasonable, objective and made from publicly available information like financial statement analysis. Another meaning of fundamental analysis is beyond bottom-up company analysis, it refers to top-down analysis from first analyzing the global economy, followed by country analysis and then sector analysis, and finally the company level analysis. Technical analysts or chartists are not concerned with any of the company's fundamentals.

They seek to determine the future price of a stock based solely on the potential trends of the past price a form of time series analysis. Numerous patterns are employed such as the head and shoulders or cup and saucer. Alongside the patterns, statistical techniques are used such wolfe wave trading strategy the exponential moving average EMA.

Candle stick patterns are believed to be first developed by Japanese rice merchants, and nowadays widely stockland rockhampton opening hours boxing day by technical analysts.

With the advent of the digital computerstock market prediction has since moved into the technological realm.

The most prominent technique involves the use of artificial neural networks ANNs and Genetic Algorithms. Scholars found bacterial chemotaxis optimization method may perform better than GA. The most common form of ANN in use for stock market prediction is the feed forward network utilising the backward propagation of long term stock market prediction algorithm to update the network weights.

Free User Registration - omotohu.web.fc2.com

These networks are commonly referred to as Backpropagation networks. Another form of ANN that is more appropriate for stock prediction is the time recurrent neural network RNN or time delay neural network TDNN. Examples of RNN and TDNN are the Elman, Jordan, and Elman-Jordan networks.

See the Elman And Jordan Networks. For stock prediction with ANNs, there are usually two approaches taken for forecasting different time horizons: The independent approach employs a single ANN for each time horizon, for example, 1-day, 2-day, or 5-day. The advantage of this approach is that network forecasting error for one horizon won't impact the error for another horizon—since each time horizon is typically a unique problem.

The joint approach, however, incorporates multiple time horizons together so that they are determined simultaneously. In this approach, forecasting error for one time horizon may share its error with that of another horizon, which can decrease performance.

There are also more parameters required for a joint forex market trading tutorials, which increases the risk of overfitting. Of late, the majority of academic research groups studying ANNs for stock forecasting seem to be using an ensemble of independent ANNs methods more frequently, with greater success. An ensemble of ANNs would use low price and time lags to predict future lows, while stock market restaurant bonifacio high street menu network forex podstawy pdf chomikuj use lagged highs to predict future highs.

The predicted low and high predictions are then used to form stop prices for buying or selling. Outputs from the individual "low" and "high" networks can also be input into a final network that would also incorporate volume, intermarket data or statistical summaries of prices, leading to a final ensemble output that would trigger buying, selling, or market directional change.

A major finding with ANNs and stock prediction is that a classification approach vs. Since NNs require training and divergence forex trading have a large parameter space, it is useful to modify the network structure for optimal predictive ability.

Tobias Preis et al. The best term in the negative direction was "debt", followed by "color". In a study published in Scientific Reports in[13] Helen Susannah Moat, Tobias Preis and colleagues demonstrated a link between changes in the number of views of English Wikipedia articles relating to financial topics and subsequent large stock market moves.

The use of Text Mining together with Machine Learning algorithms received more attention in the last years, [15] with the use of textual content from Internet as input to predict price changes in Stocks and other financial markets. The collective mood of Twitter messages has been linked to stock market performance.

The activity in stock message boards has been mined in order to predict asset returns. Finance and Google Finance were used as news feeding in a Text mining process, to forecast the Stocks from Dow Jones Industrial Average. Using new statistical analysis tools of complexity theoryresearchers at the New England Complex Systems Institute NECSI performed research on predicting stock market crashes.

long term stock market prediction

This research indicates that it is the internal structure of the market, not external crises, which is primarily responsible for crashes. The number of different stocks that move up or down together were shown to be an indicator of the mimicry within the market, how much investors look to one another for cues.

When the mimicry is high, many stocks follow each other's movements - a prime reason for panic to take hold. It was shown that a dramatic increase in market mimicry occurred during the entire year before each market crash of the past 25 years, including the financial crisis of — From Wikipedia, the free encyclopedia. Expert systems with applications. Forecasting Stock Returns with Artificial Neural Networks, Chap. Neural Networks in Business Forecasting, Editor: Retrieved August 10, Need a valuable handle on investor sentiment?

Now Google Trends Can Predict The Market". Retrieved August 9, Eugene Stanley and Tobias Preis Expert Systems with Applications. Journal of Computational Science. Stock Price Change Prediction Using News Text Mining. Retrieved from " https: Economic forecasting Stock market.

Pages using citations with accessdate and no URL CS1 maint: Navigation menu Personal tools Not logged in Talk Contributions Create account Log in.

Views Read Edit View history. Navigation Main page Contents Featured content Current events Random article Donate to Wikipedia Wikipedia store.

Interaction Help About Wikipedia Community portal Recent changes Contact page. Tools What links here Related changes Upload file Special pages Permanent link Page information Wikidata item Cite this page. This page was last edited on 16 Juneat Text is available under the Creative Commons Attribution-ShareAlike License ; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.

Privacy policy About Wikipedia Disclaimers Contact Wikipedia Developers Cookie statement Mobile view. This article includes a list of referencesbut its sources remain unclear because it has insufficient inline citations.

Please help to improve this article by introducing more precise citations. December Learn how and when to remove this template message.

inserted by FC2 system